

Acid Gas Control under Air and Oxy-fuel Firing Conditions

Reyhane Youssefi, Reinhold Spörl

BiOxySorb Final Workshop University of Stuttgart Stuttgart, Germany 22nd-23rd November 2016

Economic low carbon power Production and Emissions Control for Future and Flexible Biomass Co-fired Power Stations

Outline

- Motivation
- Introduction
- Methodology
- ➢ Results
- Conclusion

BiOxySorb Project

- Carbon-intensity reduction in coal power plants
 - Biomass co-combustion
 - Oxy-fuel combustion
 - Biomass co-combustion in oxy-fuel mode

- Emission Control
 - Dry sorbent injection
 - Biomass co-combustion

Biomass Co-combustion

- ➤ 1st and 2nd generation of biomasses
- Emission reduction by different shares of biomass cocombustion with more than 10% co-firing share on thermal basis
- Biomass co-combustion in oxy-fuel conditions

Recirculation of flue gas in oxy-fuel technology for carbon capture and storage

Separation of airborne N₂ in oxy-fuel and consequently 3-4 times higher acid gases concentration

Dry Sorbent Injection (DSI)

Calcination

 $\begin{array}{l} CaCO_3 \rightarrow CaO + CO_2 \\ Ca(OH)_2 \rightarrow CaO + H_2O \end{array}$

(above T=650-850°C)

Desulphurization

 $CaO + SO_2 + 0.5 O_2 \rightarrow CaSO_4$ (unstable above ~T=1200°C)

Dry Sorbent Injection (DSI)

Direct Desulphurization

 $Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$

 $Ca(OH)_2 + SO_3 \rightarrow CaSO_4 + H_2O$

(Below the calcination temperature)

Bioxy Sorb

 $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O$

Methodology

20 kW combustion rig (BTS)

500 kW combustion rig (KSVA)

Experimental Plan (Air and Oxy-fuel)

> 20 kW combustion rig (small scale)

• Sorbent injection

- Different injection locations (co-injection, in-furnace, before filter)
- Different coals (U.S.2,5 & S.A.)
- Different sorbents (CaCO₃, Ca(OH)₂, trona)

Biomass co-combustion

- Different biomasses (Wood pellets, Torr. Wood, Torr. Straw)
- Different thermal shares (10%, 25%, 50%)
- With sorbent injection

500 kW combustion rig (large scale)

• Sorbent injection

- Different injection locations (co-injection, in-furnace injection, before filter)
- Different sorbents (CaCO₃ and Ca(OH)₂)
- Biomass co-combustion
 - Different biomasses (Wood pellets, Torr. Poplar, Torr. Pine)

Fuel Analysis

Coal Analysis

Fuel	NCV [MJ/kg, raw]	H ₂ O [%, raw]	Ash [%, wf]	V [%, waf]	C _{fix} [%, waf]	C [%, waf]	S [%, waf]	H [%, waf]	N [%, waf]	O [%, waf]
U.S. coal	30.5	1.6	9.43	38.72	61.28	81.91	2.67	5.20	1.59	8.63
S.A. coal	26.8	2.84	16.06	20.77	79.23	82.76	0.68	4.45	1.73	10.38

Biomass Analysis

Fuel	NCV	H ₂ O	Ash	V	C _{fix}	С	S	н	Ν	0
	[MJ/kg, raw]	[%, raw]	[%, wf]	[%, waf]	[%, waf]	[%, waf]	[%, waf]	[%, waf]	[%, waf]	[%, waf]
Wood pellet	17,4	7,95	1,38	79,53	20,47	51,11	0,07	4,78	0,63	43,39
Torr. wood	19,4	6,12	0,14	79,15	20,85	50,09	0,03	4,86	-	36
Torr. straw	17,5	7,89	4,36	76,17	23,83	53,15	0,09	4,89	0,52	41,32
Torr. pine	21,24	4,54	0,61	75,66	24,34	56,31	0,05	4,52	0,03	39,08
Torr. poplar	20,59	7,26	1,34	74,96	25,04	55,40	0,04	5,40	0,07	39,09

Sorbent selection

- Ca- and Na-based sorbents
- \succ Fine limestone(CaCO₃)
- > 5 types of hydrated lime $(Ca(OH)_2)$
 - Sorbacal® H: hydrated lime
 - Sorbacal® A: fine hydrate with higher specific surface area
 - Sorbacal®SP: highly porous hydrate with high specific surface area
 - Sorbacal®SPS: Sorbacal®SP with an additive
 - Sorbacal®SPS / GL50 (80/20): mixture of 80 wt.-% Sorbacal®SPS and 20%, activated carbon
- Trona (sodium sesquicarbonate. Na₃(HCO₃)(CO₃)·2H₂O)

Sorbent test matrix (20 kW)

Fuel	Location	Sorbent	Air/Oxy-fuel	Target	
		Sorbacal®SPS			
	Co-injection	Limestone		SO ₂	
_		Sorbacal®A	Air. Oxy-fuel		
	In-furnace	Limestone			
		Sorbacal®SPS			
		Sorbacal®H	Air		
0.5. 2,5 coal -		Sorbacal®H			
	Before filter	Sorbacal®SP	Air Oxy fuel	SO ₃ . HCI	
		Sorbacal®SPS	All. Oxy-luel		
		trona			
		Sorbacal®SPS/GL50			
	Duct	Sorbacal®SPS			
	In furnada	Limestone	Air	<u> </u>	
50% torr wood -	In-lumace	Sorbacal®SPS		50 ₂	
	Defere filter	Sorbacal®SP			
	Derore miler	Sorbacal®SPS		30 ₃ . поі	
S.A. coal		limestone	Air Oxy fuel	80	
	m-numace	Sorbacal®SPS	All. Oxy-luel	30 ₂	
	Before filter	Sorbacal®SPS		HCI	

Sorbent test matrix (500 kW)

Fuel	Location	Sorbent	Air/Oxy-fuel	Target	
		Sorbacal®SPS			
	Co-injection	Limestone		SO ₂	
		Sorbacal®A	Air. Oxy-fuel		
	In furnada	Limestone			
	In-iumace	Sorbacal®SPS			
		Sorbacal®H	Air		
052.5 COal		Sorbacal®H			
		Sorbacal®SP			
	Before filter & ESP	Sorbacal®SPS	Air. Oxy-luei	SO ₃ . HCI	
		trona			
		Sorbacal®SPS/GL50			
	Duct	Sorbacal®SPS			
	In furnada	Limestone	Air	80	
50% torr wood	III-IUIIIace	Sorbacal®SPS		302	
	Poforo filtor	Sorbacal®SP			
	Delore filler	Sorbacal®SPS		30 ₃ . HUI	
SA coal	In-furnaco	limestone	Air Ow-fuel	50	
		Sorbacal®SPS	All. Oxy-luel	30 ₂	
	Before filter	Sorbacal®SPS		HCI	

Co-combustion test matrix

Air	Oxy-fuel
Pure US2.5 coal	Pure US2.5 coal
10% torr. straw	
25% torr. straw	
10% wood pellets	
25% wood pellets	25% wood pellets
50% wood pellets	
	25% torr. wood
50%torr.wood	50% torr. wood
Air	Oxy-fuel
Pure US2.5 coal	Pure US2.5 coal
25% torr. pine	25% torr. pine
25% torr. poplar	
25% wood pellets	25% wood pellets

20 kW

Results

Biomass co-combustion (20 kW)

Dilution effect of biomass co-combustion

Biomass co-combustion (20 kW)

SO3 concentrations measured before filter

- ➤ Low SO₃ concentrations under air combustion (less than 10 ppm)
- Reduced SO₃ concentration with biomass co-combustion

Biomass co-combustion (20 kW)

Almost constant concentration along the flue gas duct under air and oxy-fuel combustions

DSI (Air&Oxy-fuel, 500 kW)

- Higher desulphurization efficiecny under oxy-fuel condition due to elevated SO₂ partial pressure
- HCI is better eliminated under air condition

Profile measurments

In-furnace injection 1100°C, U.S. coal

- Sorbacal SPS shows the highest desulphurization efficiecny under air condition.
- Similar sorbent performance under oxy-fuel for in-furnace DSI desulphurization

Co-injection 1300°C, U.S coal

- Limestone performs better by co-injection under both combustion conditions
- > SPS is more prone to sintering at high temperatures

100% 100% 80% 80% HCI removal HCl removal 60% 60% Sorbacal H Sorbacal H Sorbacal SP 40% 40% Sorbacal SP Air Sorbacal SPS **Oxy-fuel** Sorbacal SPS 20% 20% Trona Trona 0% 0% 1 2 3 5 6 0 Δ 2 3 5 0 1 Δ 6 Ca/2Cl or Na/Cl Ca/2Cl or Na/Cl

Before filter injection, 220 °C, U.S. coal

- Good degree of removal under both combustion conditions
- Lower removal efficiency with Sorbacal H under both air and oxy-fuel conditions due to less available surface area

Sorbacal H, Air, before filter injection, U.S. coal

Good degree of HCI removal by in-furnace injection

Negligible SO₂ removal at before filter injection

DSI (injection location, 500 kW)

- Similar HCI removal behaviour for before E-filter and before fabric filter injection
- Higher desulphurization rate by in-furnace injection compared to co-injection

DSI (Coal type, 20 kW)

Limestone, in-furnace injection

- Coal with higher sulphur content shows better removal behaviour
- > Attributed to higher SO₂ concentration and more CaSO₄ stability

Biomass co-combustion and DSI, 20 kW

DSI (SO3 removal, 20 KW)

- More than 80% SO₃ removal at high SO₂ capture rates
- ➢ High SO₃ removal at medium HCl removal rate

Facility scale comparison

Limestone, Air

- Similar sorbent performance at different experimental scales
- Slightly better desulphurization rate at Ca/S ratios higher than stoichiometric for 20 kW

Conclusion

- No negative impact of oxy-fuel combustion on DSI technology
- Better removal performance under oxy-fuel combustion for SO₂ control (suitable temeprature 1000°C-1100°C)
- Limestone is better for co-injection and Sorbacal SPS has better removal efficiecny by in-furnace injection.
- Decent HCI and SO₃ removal at low temperature injection
- Very low emission values by the combination of biomass cocombustion and sorbent injection
- ➤ Transferability of the results from 20 kW to 500 kW combustion rigs

Thank you for your attention

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Union's Research Fund for Coal and Steel (RFCS) research programme under grant agreement num. RFCR-CT-2013-00010 (RFCS research project BiOxySorb: <u>http://bioxysorb.eu-projects.de/</u>). The authors gratefully acknowledge this financial contribution and the support by advices and expertise of the BiOxySorb project partners Fundación Ciudad de la Energía, Uniper Technologies Limited, Lhoist Recherche et Développement SA and Gestamp Biomass Solutions. The authors also thank all colleagues of IFK's department "Firing Systems" who contributed to this work and in particular S. Pek, B. Ebner, M. Faulhaber, M. Pagano and T. Wagner, as well as W. Ross and his team of IFK's 'Laboratory for Fuels, Ashes and Slag' for their support in the performed experiments.

