

Large scale experiences on biomass feeding, co-firing and sorbent performance

M.A. Delgado; R. Diego; C. López; I. Álvarez

November 23rd, 2016

Economic low carbon power Production and Emissions Control for Future and Flexible Biomass Co-fired Power Stations

Index

CIUDEN

Test campaign structure & goals

Results

Conclusions

CO₂ geological storage Hontomín (N Spain)

Schematic PFD

Block	Fuel	Specific objectives	
Block #1	Anthracite and torrefied biomass	Fuel preparation system: fuel milling in the existing ball mill.	
Block #2	Bituminous	Different additives for control of acid gases and Hg	Sor Pacat and Attatree F einkak 1-209
Block #3	Bituminous and sawdust	Impact of co-combustion of biomass on emissions	

Block#1 Fuel selection...lab tests

Block#1 Results

Sorbent rate	Injection point	Goals / Comments
-	N/A	BASE case OXY Mode
High	SCR	SORBACAL® SPS
Low	SCR	SORBACAL® SPS
Low	uBF	SORBACAL® SPS, Bag Filter injection
High	uBF	SORBACAL® SPS in Bag Filter injection
Low	uBF new	PAC blend (silo 2)

Block #2 SO₂/SO₃ abatement

Fundación Ciudad de la Energía

Ratio Ca/S

Block#2 Hg abatement

Test code

Kmol sorbent /h

Block#3 Co-firing

on
on
or

Block#3 SO₂

Sorbent mass flow rate (kg/h)

Block#3 HCI

Air mode

Fundación Ciudad de la Energía

Sorbent mass flow rate (kg/h)

Conclusions

Fundación Ciudad de la Energía

Co-milling process performed in a semi-industrial ball mill designed for coal, **achieving a ratio higher than 30 %**_{th} **basis** with chipped torrefied biomass

3 % w of moisture was reached at the outlet of the mill

PSD at the outlet of the mill: more than 40 % with a size lower than 75 micras

The production was low in comparison with the design value of production for coal

SO₂ abatement was performed in air (38 %) and oxy mode (46 %) with a Ca/S of 1,5. With the same sorbent, 50 % of **HCI** was removed in air mode

Hg abatement: activated carbon was injected obtaining and efficiency of 50 %

Co-combustion tests in air and oxy were carried out in one of the existing horizontal burners in the PC boiler, using bituminous coal and sawdust as fuels. The maximum ratio of co-combustion reached in the burner was 36 % th basis.

The research leading to these results has received funding from the European Union's Research Fund for Coal and Steel (RFCS) research programme under *grant agreement* n° RFCR-CT-2013-00010

Thank you for your attention

Further information:

Miguel Ángel Delgado, ma.delgado@ciuden.es

ciu ner dad gía de la